Electrospun fibers for vaginal anti-HIV drug delivery

Anna K. Blakney, Cameron Ball, Emily A. Krogstad, Kim A. Woodrow
http://dx.doi.org/10.1016/j.antiviral.2013.09.022

Abstract
Diversity of microbicide delivery systems is essential for future success in the prevention and treatment of HIV in order to account for the varied populations of women all over the world that may benefit from use of these products. Recently, a novel dosage form for intravaginal drug delivery has been developed using drug-eluting fibers fabricated by electrospinning. There is a strong rationale to support the idea that drug-eluting fibers can be designed to realize multiple design constraints in a single product for topical HIV prevention: fibers are able to deliver a wide range of agents, incorporate multiple agents via composites, and facilitate controlled release over relevant time frames for pericoital and sustained (coitally-independent) use. It is also technologically feasible to scale-up production of fiber-based microbicides. Electrospun fibers may allow for prioritization of physical attributes that affect user perceptions without compromising biological efficacy. Challenges with using fibers as a microbicide include issues related to vehicle deployment, spreading and retention in the vaginal vault. In addition, studies will need to address the interaction of the fibers with the mucosal environment, including unknown safety and toxicity. Sustained release fiber microbicides capable of delivering multiple antiretroviral drugs while simultaneously exhibiting tunable degradation or dissolution of the fibers is also a challenge. However, electrospun fibers are a promising new platform for vaginal delivery of anti-HIV agents and future research will inform their place in the field. This article is based on a presentation at the “Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies”, held in Arlington, Virginia on February 20–21, 2013. It forms part of a special supplement to Antiviral Research.

http://www.sciencedirect.com/science/article/pii/S0166354213002829

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s